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Figure 1: Select rendered animation frames of left eye performing synthetic eye movement calibration including partial and full blinks.

Abstract

A convolution-filtering technique is introduced for the synthesis of
eye gaze data. Its purpose is to produce, in a controlled manner,
a synthetic stream of raw gaze position coordinates, suitable for:
(1) testing event detection filters, and (2) rendering synthetic eye
movement animations for testing eye tracking gaze estimation al-
gorithms. Synthetic gaze data is parameterized by sampling rate,
microsaccadic jitter, and simulated measurement error. Sampled
synthetic gaze data is compared against real data captured by an
eye tracker showing similar signal characteristics.

Keywords: eye movement synthesis, signal processing

Concepts: •Computing methodologies → Procedural anima-
tion; Model verification and validation;

1 Introduction & Background

The recorded eye movement signal is well understood from the
point of view of analysis, but surprisingly few advances have ap-
peared regarding its synthesis. Most analytical approaches use gaze
data filtering, e.g., machine learning [Samadi and Cooke 2014],
and/or processing for the detection of specific events [Ouzts and
Duchowski 2012] but they rarely, if at all, mention signal synthesis.
Signal processing approaches have been used for synthesis. Yeo
et al.’s [2012] Eyecatch simulation uses the Kalman filter to pro-
duce gaze and focuses primarily on saccades and smooth pursuits.
Microsaccades were not modeled. As noted by Yeo et al., simu-
lated gaze behavior looked qualitatively similar to gaze data cap-
tured by an eye tracker, but comparison of synthesized trajectory
plots showed absence of gaze jitter evident in the raw data.
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Data-driven techniques and models based on statistical analysis of
recorded movements have also been proposed. Ma and Deng [2009]
described a model of gaze driven by head direction/rotation, which
gave an elegant way of generating head and eye movements, al-
though their gaze-head coupling model seemed contrary to physiol-
ogy: head motion appeared to trigger eye motion. Instead, because
the eyes are mechanically “cheaper” and faster to rotate, the brain
usually triggers head motion when the eyes exceed a certain sac-
cadic amplitude threshold (about 30◦; see Murphy and Duchowski
[2002] for a short introductory note on this topic). Nevertheless,
Ma and Deng [2009] and then later Peters and Qureshi [2010] both
provide useful models of gaze/head coupling with a good “linkage”
between gaze and head vectors.

Le et al. [2012] provide a fully automated framework to generate
realistic head motion, eye gaze, and eyelid motion based on live
(or recorded) speech. To synthesize eye gaze, they first nonlin-
early transform recorded gaze, speech features, and head motion
to a high-dimensional feature space. Their data-driven gaze synthe-
sis model is essentially nonlinear, but it is mainly concerned with
modeling unperturbed gaze direction.

Similarly, Duchowski and Jörg [2015] model realistic eye move-
ment rotations, focusing on adherence to Donders’ and Listing’s
laws [Tweed et al. 1990]. However, their model is essentially lim-
ited to controlling torsional rotations of the eyeball. They provide
a quaternion model of oculomotor rotation mechanics, but they do
not discuss how their synthetic eyes can be rotated automatically.

Most of the above gaze synthesis models originate from computer
graphics research (e.g., see also Wood et al. [2015]), where gaze
shifts and rotations of the head are modeled to redirect gaze toward
a specific target. Animating gaze shifts for virtual humans often in-
volves the use of parametric models of human gaze behavior [An-
drist et al. 2012; Pejsa et al. 2013]. While these models enable
virtual humans to perform natural and accurate gaze shifts, signal
characteristics, and in particular noise, are rarely addressed. Noise,
however, although a nuisance from a signal processing perspective,
is a key component of natural eye movements, whether it is present
due to underlying neuronal properties (e.g., microsaccades), or due
to eye tracker measurement noise. For animating virtual charac-
ters, the eye movement signal may even be exaggerated or stylized
(i.e., expressive). The purpose of these models (e.g., see Vidal et
al. [2015]) is to render believable characters and not necessarily to
generate a signal as input to test signal analysis techniques.

The dynamics of rendered eyes have received little attention since
Lee et al.’s [2002] Eyes Alive model which focused largely on sac-
cadic eye movements, implementing the well-known saccadic main
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Figure 2: Saccade duration as a function of amplitude with two filtering options for data from two user studies and synthetic model.

sequence [Bahill et al. 1975]. According to Ruhland et al.’s [2014],
state-of-the-art report on eyes, gaze animation largely focuses on
modeling rapid saccadic shifts, smooth pursuits, binocular rotations
implicated in vergence, and the coupling of eye and head rotations.

Campbell et al. [2014] propose a unified Bayesian model for frame-
by-frame (rather than fixation-by-fixation) eye movement on an es-
timated saliency map that does not heavily rely on preprocessing of
data into fixations and saccades.

The gaze synthesis models reviewed above are generally concerned
with gaze direction and do not specifically address the resultant
gaze signal properties. Our procedural model of gaze motion builds
on Duchowski et al.’s [2015] “bottom-up” model of gaze point
movement, referred to as a “look point” in space projected onto
a 2D plane in front of the eye. Our simulation differs by separating
out 1/ f pink noise modeling microsaccadic jitter from eye tracker
noise, modeled by white (Gaussian or normal) noise. The result-
ing sequence of artificial raw gaze data is used in two ways: testing
event detection filters, and rendering a video of a virtual eye used to
test eye-tracking algorithms. We find that the Savitzky-Golay filter
is adequate for implementing velocity-based saccade detection.

2 Pilot Test for Initial Data Collection

To bootstrap the simulation, we collected data from a pilot eye
tracker calibration to 11 individuals (4 male, 7 female). Conditions
(e.g., apparatus, procedures) were similar to data collected later as
a means of comparison with simulated data (see §4 below).

Data Filtering (Event Detection). Although Ouzts and
Duchowski [2012] advocate the use of a combination of smoothing
(Butterworth, or BW) and differentiation (Savitzky-Golay, or
SG) filters to implement velocity-based (I-VT [Salvucci and
Goldberg 2000]) event detection, we found that the inclusion of
the Butterworth filter over-smooths the data resulting in outcome
measures that do not match expected normal limits, i.e., the main
sequence, relating saccadic amplitude (θ ) and duration (∆t),

∆t = 2.2θ +21 (milliseconds) (1)

for saccadic amplitudes up to about 20◦ [Bahill et al. 1975; Knox
2001]. The use of the BW filter leads to overestimation of mean
saccade duration, giving a main sequence of ∆t=4.39θ +35.

Following Nyström and Holmqvist [2010], we compared the above
event detection results to the use of just the SG filter. The Savitzky-
Golay [1964] filter fits a polynomial curve via least squares mini-
mization prior to calculation of the curve’s sth derivative (e.g., 1st

derivative (s=1) for velocity estimation) [Gorry 1990], hence it ef-
fects its own smoothing step prior to differentiation. This makes
the use of the Butterworth filter somewhat redundant. The only
reason for using the Butterworth filter could be for finer control of
noise suppression that is tunable to the sampling frequency of the
data. The SG filter does not provide an intuitive way of specifying
sampling rate while the Butterworth filter does.

Figure 2(a) shows a comparison of the pilot calibration data cap-
tured from human participants as processed by the Butterworth and
SG filter combination to processing by just the SG filter. Event de-
tection with just the SG filter yields a main sequence equation of
∆t=2.29θ +35 which is inline with expectation.

The Butterworth filter used was a 2nd degree filter with parameters
of 60 Hz sampling rate and 6.15 Hz cutoff frequency. The Savitzky-
Golay filter used was a 3rd degree filter of width 5. Velocity thresh-
old used in both cases was 40◦/s.

Data Cleaning. Accuracy of raw pilot data was measured at
1.07◦ with precision (standard deviation) of 0.16◦. Due to tech-
nical issues with the eye tracker, some time segments are missing
from the data. The majority of these gaps are 300–400 ms in du-
ration. When these gaps are present during a saccade, the duration
of the gap is included as part of the saccade time. This causes ex-
cessively long saccades to be detected. For example, a saccade of
84,046 ms was produced. We removed this point from the data
and all remaining saccades exceeding three standard deviations of
the mean (133.73 ms). Figure 3(a) shows fixations produced by
velocity-based filtering. The number of fixations appears reason-
able suggesting the suitability of the Savitzky-Golay filter for im-
plementation of the I-VT event detection algorithm. Given these
results, we felt comfortable in using the SG filter for processing
synthetic data and trusting its estimate of saccades and fixations.

3 Eye Movement Modeling

To generate a stream of synthetic gaze points resembling captured
data pt = (xt ,yt), a reasonable strategy is to guide synthetic gaze
to a sequence of known points, i.e., a grid of points that is used to
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Figure 3: Representative fixations following event detection with the Savitzky-Golay filter, showing suitable I-VT event detection results.
Fixation points (c) were obtained from synthetic raw data shown in Figure 4(b); note that fixation durations are randomly perturbed.

calibrate the eye tracker to human viewers. Given such a sequence
(e.g., see Figure 4), several important requirements arise, namely:

1. a model of the spatio-temporal fixation perturbation;
2. a model of saccadic velocity (i.e., position and duration); and
3. control of the simulation timestep and sampling rates.

A model of spatio-temporal perturbation of gaze points at a fix-
ation can be effected through simulation of microsaccadic jitter
[Duchowski et al. 2015]. Saccadic velocity can be approximated
by the main sequence (1), or it can be obtained empirically from
observed data, if available. Assuming a straightforward simulation
of a dynamical system involving Euler integration at each timestep,
the timestep should be dissociated from the simulation’s sampling
frequency. Doing so allows the simulation to produce data at differ-
ent sampling rates, thus modeling various eye tracking equipment.
Each of these simulation components is detailed below.

3.1 Modeling Fixations

Duchowski et al. [2015] model microsaccades by a normal distri-
bution of N (µ =0,σ =12/60) (arcmin) for each of the x- and y-
coordinate offsets to the fixation coordinate during simulation (set-
ting σ = 0 yields no jitter during fixation), giving a sequence of
points situated at the gaze coordinates given in Figure 4(a). Mod-
eling saccadic jitter by the normal distribution yields white noise
perturbation. To model microsaccades as 1/ f pink noise perturba-
tion, output of the white noise distribution is fed through a digital
pink noise filter [Hollos and Hollos 2014]. The pink noise filter
P(α,ω0) is specified by two parameters: α and ω0, where 1/ f α

describes the pink noise power spectral distribution and ω0 the fil-
ter’s unity gain frequency (or more simply its gain).

x y
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(b) 2D distribution of synthetic gaze points

Figure 4: Generation of a sequence of synthetic gaze points.
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(a) pink noise perturbation
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(b) actual gaze data

Figure 5: Synthetic pink noise perturbation and actual data.

Setting α=1 produces 1/ f noise, which has been observed as char-
acteristic of pulse trains of nerve cells belonging to various brain
structures [Usher et al. 1995]. Setting α=0 produces white, uncor-
related noise, with a flat power spectral distribution, likely a poor
choice for modeling biological motion such as microsaccades. We
set our pink noise filter with α=0.8 and ω0=0.85 as these are close
to those used by Duchowski et al. [2015] (α =0.6, ω0 =0.85) for
producing fairly realistic synthetic eye movement animations.

Synthetic data perturbed solely by pink noise produces pleasing an-
imations of the eye, however, pink noise alone cannot account for
all the noise seen in typical captured data. Figure 5 shows data per-
turbed solely by pink noise along with a representative (raw) gaze
plot of captured data. To make synthetic gaze data useful for testing
event detection filters, further signal perturbation is required.

To produce synthetic (raw) data (see Figure 4(b)), we add to the
pink noise jittered fixations a perturbation modeled by white noise
N (0,σ = 1.07), using the average measured accuracy of the pilot
raw data (see above), giving the complete fixation model as

pt+h = pt +P(α,ω0)+N (0,σ = 1.07) (2)

where h is the simulation time step.

3.2 Modeling Saccade Acceleration, Velocity, Position

To effect movement between fixation points, a model of saccades is
required, specifying both movement and duration of the gaze point.
We start with an approximation to a force-time function assumed by
a symmetric-impulse variability model [Abrams et al. 1989]. This
function, qualitatively similar to symmetric limb-movement trajec-
tories, describes an acceleration profile that rises to a maximum,
returns to zero about halfway through the movement, and then is
followed by an almost mirror-image deceleration phase.
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Figure 6: Parametric saccade position model derived from an ide-
alized model of saccadic force-time function assumed by Abrams et
al.’s [1989] symmetric-impulse variability model: scaled position
60H(s), velocity 31Ḣ(s), and acceleration 10Ḧ(s).

To model a symmetric acceleration function, we can choose a com-
bination of Hermite blending functions h11(s) and h10(s), so that
Ḧ(s) = h10(s)+h11(s) where h10(s)= s3−2s2+s, h11(s)= s3−s2,
s ∈ [0 : 1], and Ḧ(s) is acceleration of the gaze point over normal-
ized time interval s ∈ [0 : 1]. Integrating acceleration produces ve-
locity, Ḣ(s) = 1

2 s4 − s3 + 1
2 s2 which when integrated once more

produces position H(s) = 1
10 s5− 1

4 s4 + 1
6 s3 on the normalized in-

terval s ∈ [0:1] (see Figure 6).

Given an equation for position over a normalized time window
(s∈ [0:1]), we can now stretch this time window at will to any given
length s = t/∆t. Because the distance between gaze target points is
known a priori, we can use these distances (pixel distances con-
verted to amplitudes in degrees visual angle) as input to the main
sequence to obtain saccade length.

Assuming data collected from eye tracker calibration would not de-
viate greatly from the main sequence found in the literature [Bahill
et al. 1975; Knox 2001] (actual data does not quite fit this model
and differs slightly in its slope and y-intercept), we set the expected
saccade duration to that given by (1) but augmented with a 10◦ tar-
geting error. We also add in a slight temporal perturbation to the
predicted saccade duration, based on empirical observations. Sac-
cade duration is thus modeled as

∆t = 2.2N (θ ,σ =10◦)+21+N (0,0.01) (milliseconds) (3)

3.3 Running the Simulation

When running the simulation, it is important to keep the simulation
time step (h) small, e.g., h = 0.0001. When about to execute a
saccade, set the saccade clock t =0, then while t <∆t perform the
following simulation steps:

1. s = t/∆t (scale interpolant to time window)
2. pt = Ci−1 +H(s)Ci (advance position)
3. t = t +h (advance time by the time step h)

where Ci denotes the ith 2D calibration point coordinates (see
Figure 4(a)) and pt is the saccade position, both in vector form.

Setting time step h to an arbitrarily low value allows dissociation of
the simulation clock from the sampling rate. We can thus sample
the synthetic eye tracking data at arbitrary sampling periods, e.g.,
d =1, d =16, or d =33 ms for sampling rates of 1000 Hz, 60 Hz,
or 30 Hz, respectively. Note that sampling rates can be made very
precise, generally coincident with the computer’s clock rate.

Unfortunately, eye trackers’ sampling rates are not precise, or
rather, the data obtained from the eye tracker shows non-uniform
sampling periods between raw gaze points (x,y, t), most likely due
to competing processes on the computer used to run the eye track-
ing software and/or due to network latencies.

Using the same empirical pilot data collected from calibration of an
eye tracker to 11 individuals (see above), we found that the mean
sampling duration was 16.41 ms with standard deviation of 1.32 ms.
These descriptive statistics were obtained after removing all sam-
ples recorded with a reported sampling period greater than 1 second
and all data registering at a sampling period of the mean plus three
standard deviations (8.09 ms). We considered these anomalous data
samples. Based on these observations, we suggest to model the
sampling period by N (0,σ =0.5) milliseconds.

3.4 Summary: Listing the Sources of Variation

To recount, the stochastic model of eye movements is based on in-
fusion of probabilistic noise at various points in the simulation:

• fixation durations, modeled in this instance by N (1.081,σ =
2.9016) (seconds), the average and standard deviation from
our pilot data,

• microsaccadic fixation jitter, modeled by pink noise P(α =
.8,ω0 = .85) (degrees visual angle), based on Duchowski et
al.’s [2015] simulation,

• eye tracker noise, applied following fixation jitter, N (0,σx=
0.022) and N (0,σy =0.036) in normalized screen coordi-
nates in each of x- and y-directions, the calculated average
accuracy of the x and y components, equivalent to N (0,σx=
0.78◦), N (0,σy=0.74◦) and N (0,σ =1.07◦),

• saccade durations, modeled by (3), and
• sampling period N (1,000/F ,σ =0.5) (milliseconds), with

F the sampling frequency (Hz).

For rendering purposes, eye tracker noise is removed, and the eye
movement data stream is appended with

• blink duration, modeled as N (120,σ =70) (milliseconds),
• pupil unrest, modeled by pink noise P(α = .8,ω0 =

.16) (relative diameter).

4 Comparison with Empirical Data

We evaluate our synthetic eye movement data stream in two ways.
First, we compare our synthetic data to data captured by an eye
tracker during calibration (using the same sequence of calibration
points). Second, we compare real and synthetic scanpaths directly
via cross spectral power analysis (see below). We also produce syn-
thetic animations of the eye using Świrski and Dodgson’s [2014]1

realistic renderer, which uses a Blender 3D model of the eye and
head and a physically correct rendering technique.

Stimulus. A custom nine-point calibration was used with coordi-
nates given in Figure 4(a). The points appeared one-by-one in se-
quence, starting with the central point, moving up to the upper-left
corner, then proceeding clockwise to the corner points, then to the
central top point, continuing in a clockwise diamond sequence until
finishing with the central point.

Apparatus. In both user studies data were captured by a Gazepoint
GP3 eye tracker. The GP3 was controlled by a standard Windows
laptop with 8 GB RAM and Intel i7 CPU. Stimuli were presented on
laptop screen (17′′ with 1600×900 resolution) with the eye tracker
placed under the screen (see Figure 7). Both studies were conducted

1http://www.cl.cam.ac.uk/research/rainbow/projects/eyerender

150

http://www.cl.cam.ac.uk/research/rainbow/projects/eyerender


in a laboratory with no experimental conditions (the purpose of the
study was solely to collect gaze data from a custom calibration se-
quence). The eye tracker functions at a 60 Hz sampling rate with
a manufacturer-reported accuracy of 0.5-1◦ with a 25×11×15 cm
head movement volume. Our own measurements suggest mean ac-
curacy of the eye tracker at about 1.1◦, which is what we used to
model eye tracker noise (see above).

Participants. Data was captured from 16 employees of a research
institute with no prior experience with eye tracking. Three partic-
ipants were excluded due to calibration error (over 2◦). The final
sample used for statistical analyses consists of 13 participants (6
female and 7 male) with average age of 32.87 (SD=3.46). Average
calibration error was 0.54◦ (SD=0.18◦).

Procedure. The test procedure was prepared in PsychoPy [Peirce
2007]. Participants were instructed to follow and try to fixate the
roving dot on the screen. They were first accustomed with the eye
tracker and passed the eye tracker’s own 9-point calibration proce-
dure. The custom calibration then started during which the gaze
position data were collected. The data from the custom calibration
sequence were then used in the statistical analyses reported below.

4.1 Veridical Data

The main goal of the statistical analysis was to compare linear re-
gression models between saccade amplitude and duration produced
by different filter combinations, i.e., either the Savitzky-Golay filter
or a combination of the Butterworth and Savitzky-Golay filters.

First, we describe the statistical test of differences in saccade ampli-
tude and duration between data produced by both filters. Second,
the regression linear models of relation between saccade duration
and amplitude were fit and their slopes were compared with the use
of linear models. Finally, bootstrap resampling simulations were
run to obtain reliable confidence intervals of intercept and slope
of the regression models for comparison with the expected main
sequence (1). All statistical analyses were scripted with R, the lan-
guage for statistical computing.

The comparison of mean saccade amplitudes produced by the fil-
ter combinations with a Welch two sample t-test revealed statistical
significance, t(251.61)= 2.76, p< 0.001. Saccade amplitude was
significantly greater without the Butterworth filter (M=12.69,SE=
0.52) than with the Butterworth filter (M=10.90,SE=0.38). Simi-
lar comparison of saccade duration showed a statistically significant

Figure 7: Experimental setup with participant and experimenter.

difference between both filter combinations, t(275.2) = 7.20, p<
0.001. The Savitzky-Golay filter produced significantly shorter sac-
cade durations (M=58.02,SE=2.23) than the Butterworth/SG fil-
ter combination (M=81.23,SE=2.33).

The use of Butterworth/Savitzky-Golay combination results in a
main sequence equation of ∆t =4.75θ +29.42. The use of just the
SG filter yields a main sequence equation of ∆t=2.18θ +30.38.

To test the difference in slope and intercept of the linear relation
between saccade duration and amplitude, linear modeling was used
with the interaction term between predictors. Saccade duration was
treated as the dependent variable with amplitude and filter used as
predictors. Analysis revealed that the whole regression model was
statistically significant, F(3,274)=99.97, p<0.001. It also showed
that intercepts for the two filter combinations were not significantly
different (∆βintercept =−0.95,SE= 6.04), t(274)= 0.16, p= 0.88.
However, the difference in slopes (∆βslope = 2.57,SE= 0.48) was
statistically significant, t(274)=5.37, p<0.001, see Figure 2(b).

In order to test whether the coefficients of linear regression models
obtained from the filtered data are similar to the main sequence, the
regression models were bootstrapped using 2,000 iterations. Boot-
strapping allows for estimation of accurate confidence intervals of
regression coefficients based on relatively small sample sizes, as in
the case of this study.

For data filtered with the Savitzky-Golay filter, the 95% confi-
dence interval for the intercept is [20.56,44.60] while for slope
[1.00,3.05]. For data filtered with the Butterworth/Savitzky-
Golay combination the confidence interval for the intercept is
[19.52,40.10] and for slope it is [3.92,5.63]. The main sequence
slope (2.2) fits within the confidence interval produced by data fil-
tered with just the Savitzky-Golay filter. The main sequence in-
tercept (21) fits within the confidence intervals obtained from data
processed by both filter combinations.

Summing up, veridical results of the user study showed several sig-
nificant differences between data produced by the Savitzky-Golay
and the Butterworth/Savitzky-Golay filter combinations. Data ana-
lyzed with just the SG filter produced significantly higher saccade
amplitudes and lower durations than the BW/SG combination. The
linear relation of saccade amplitudes and durations produced by
the SG filter have significantly shallower slope than the regression
slope obtained from the BW/SG combination. However, they both
produce similar intercepts. Finally, the bootstrap resampling proce-
dure showed that data filtered with the Savitzky-Golay filter led to
a fit regression line between saccade amplitude and duration that is
similar to the original main sequence of (1) [Bahill et al. 1975].

4.2 Synthetic Data

The effect of filter combinations is similar on synthetic data as it is
on real data. Figure 2(c) shows a comparison of the synthetic data as
processed by the Butterworth and SG filter combination with pro-
cessing by just the SG filter. The use of Butterworth filter smooth-
ing prior to application of the SG filter overestimates mean saccade
duration, resulting a main sequence equation of ∆t=2.85θ +65.

Event detection with just the SG filter yields a main sequence equa-
tion of ∆t = 2.35θ + 42 which is more inline with expected out-
comes since the data is generated starting with main sequence equa-
tion. Statistically, the difference in mean saccadic duration resulting
from the two event detection methods, as computed by a Welch two
sample t-test, is significant (p< 0.01) The Butterworth/Savitzky-
Golay combination yields a much higher estimate of mean saccadic
duration (M= 106.21, SD= 14.73) than as estimated by just the
Savitzky-Golay filter (M= 77.66, SD= 14.13). Filter parameters
were the same throughout (see §2).
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Table 1: Comparison of saccade durations and amplitude fits from
pilot and veridical user studies to synthetic data processed with the
SG or BW/SG filter combinations via regression analysis.

Filter Statistic Study ∆β SE t-test p-value

SG
(df=334)

intercept
pilot −6.99 8.26 0.85 0.40
veridical −11.24 7.52 1.49 0.14

slope
pilot −0.05 0.53 0.11 0.92
veridical −0.17 0.48 0.35 0.73

BW/SG
(df=352)

intercept
pilot −30.13 7.67 3.93 < 0.001
veridical −35.20 7.59 4.64 < 0.001

slope
pilot 1.54 0.52 2.94 < 0.01
veridical 1.91 0.56 3.55 < 0.001

Testing whether the coefficients of linear regression models ob-
tained from the filtered data are similar to the main sequence, boot-
strapping with 2,000 iterations was applied once again. For data fil-
tered with the Savitzky-Golay filter, the 95% confidence interval for
the intercept is [34.49,48.54] while for the slope [1.91,2.75]. The
confidence interval of the slope of data filtered with just the SG filter
contains the main sequence slope value (2.20). The obtained slope
and intercept of data filtered with the Butterworth/Savitzky-Golay
combination produce the following 95% confidence intervals: for
the intercept is [54.68,71.80] and for the slope [2.39,3.39]. Neither
confidence interval contains the main sequence intercept or slope.

5 Results: Synthetic vs. Veridical Data

To verify whether the synthetic data sufficiently matches data ob-
tained from both the pilot and user studies, we compared the lin-
ear relations (via slope and intercept) between saccade duration
and amplitude. Linear regression analyses were conducted where
amplitude was a continuous predictor, with the source of the data
(synthetic, pilot, and user study) as a dichotomous predictor. The
analysis was run separately for data processed by just the Savitzky-
Golay filter and the Butterworth/Savitzky-Golay filter combination.
In both analyses, regression lines from pilot and veridical data were
compared to the regression line fit to synthetic data.

Analysis of data processed with the SG filter revealed that the re-
gression model was statistically significant, F(5,334)=46.76, p<
0.001, meaning that the intercept (β = 41.62,SE= 6.72, t(334)=
6.19, p<0.001) and slope (β =2.35,SE=0.42, t(334)=5.59, p<
0.001) of the relation between amplitude and duration were sig-
nificant, independent of the data source. What is of interest to this
study is that the analyses showed that the difference between veridi-
cal data and the model fit to the synthetic data was not significant,
either in terms of intercept or slope (see Table 1, c.f. Figure 2).

Contrary results were obtained via analysis of data processed with
the BW/SG filter combination. The model, independent of data
source, was also significant, F(5,352)=131.10, p<0.001, show-
ing a statistically significant relation between amplitude and dura-
tion described by intercept (β =64.62,SE=6.69, t(352)=9.66, p<
0.001) and slope (β = 2.85,SE = 0.44, t(352) = 6.45, p < 0.001).
However, the regression lines fit to both pilot and veridical data
differed significantly in their intercepts and slopes when compared
to the regression line fit to the synthetic data. For detailed statistics
see Table 1 (c.f. Figure 2).

Summing up, regression analyses show that synthetic data is sta-
tistically similar to the two sets of veridical data, when processed
by the Savitzky-Golay filter. In terms of saccade amplitudes and
duration, synthetic data serves as a suitable match to authentic eye
movement data. The addition of the Butterworth filter into the sig-
nal processing pipeline alters the slope and intercept of the linear
regression, significantly deviating from veridical data.

5.1 Cross Spectral Power Analysis

Analysis via main sequence modeling compares synthetic and
veridical data in terms of saccade duration and saccade amplitude.
Direct comparison of eye movement data is problematic since avail-
able approaches do not necessarily consider stochastic signal prop-
erties. Probability-distance measures such as the Kullback-Leibler
(KL) divergence or the Earth Mover’s Distance (EMD; see for
example Dempere-Marco et al. [2010]) are generally designed to
compare spatial distributions (e.g., of aggregated fixations), with-
out necessarily considering how the spatial distribution(s) came to
be, i.e., characteristics of the process that created them.

Instead of comparing spatial distributions (e.g., of fixations), we
need rather to inspect the underlying dynamical processes govern-
ing their creation. That is, we require spectral analysis, which con-
siders the spectral content (i.e., the distribution of power over fre-
quency) of a time series [Stoica and Moses 2005]. Specifically, we
consider the pairwise signal coherence, the normalized Cross Spec-
tral Density (CSD) of raw gaze data streams represented as time
series in the frequency domain.

Raw data stream timestamps do not match due to imperfect sam-
pling, e.g., while sampling at 60 Hz data is theoretically recorded
every 16 ms on average, but in practice this is imprecise and may
range by a few milliseconds. To temporally align the data, it must
be resampled: since we cannot upsample, we downsample to a
common minimum rate, i.e., 50 Hz since we expect temporal gaps
of no more than 20 ms in the (raw) data streams (sampled at 60 Hz).

Raw gaze data is typically 2D with x- and y-components. For com-
putation of the CSD, we only consider 1D time series and use only
the x-coordinate (i.e., left-to-right gaze jitter). With raw eye move-
ment data defined as pt =(xt ,yt), we consider only the x-coordinate
xt and treat it as a discrete-time signal u=x(t).

The signal coherence, or normalized Cross Spectral Density (CSD),

C2(ω) =
|φuv(ω)|2

φuu(ω)φvv(ω)

is analogous to correlation but in this case between two time series
u and v, where φuv is the CSD of the two series and φuu and φvv
are the Power Spectral Densities (PSDs) of each. Power Spectral
Density (PSD) is defined as the discrete-time Fourier transform of
the signal covariance φu(ω) = ∑

∞
k=−∞

r(k)e−iωk with r(k) the au-
tocovariance sequence of x(t) defined as r(k) = E{x(t)x∗(t − k)}
with E{·} denoting the expectation operator (which averages over
the ensemble of realizations), where it is assumed to depend only
on the lag between two samples averaged [Stoica and Moses 2005].

Coherence is a function of frequency; to compute a single sim-
ilarity metric between a pair of signals, we integrate over fre-
quency to obtain total power (or variance in a statistical sense)
P = 1

T
∫ T

0 C2(ω) where T is the extent of frequency components
sampled (T ∈ [0 : 0.25] Hz in this case; see Figure 9). The CSD of a
signal with itself produces no variance (in the statistical sense) and
hence P=1, giving a convenient, normalized metric of similarity.

To test similarity of our synthetically produced data to veridical data
we considered all raw data for which we had at least 500 samples
that contained temporal sample gaps no greater than 20 ms: 11 raw
data streams from our pilot data (relabeled PD), 12 raw data streams
from our user study (relabeled US), 11 raw data streams with syn-
thetic jitter but no eye tracker noise (SJ), and 11 raw data streams
with both synthetic jitter and eye tracker noise (SN), for a total of
45 data streams, yielding

(45
2
)
=990 combinations (we also tested

each stream with itself but omitted these unity results in the final
statistical analyses).
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(a) veridical gaze data (b) synthetic gaze data without eye tracker noise (c) synthetic gaze data with eye tracker noise

Figure 8: Gaze point (look point) composite renderings showing the entire calibration sequence on one frame. Both veridical and synthetic
data augmented with noise show similarly large spatial distributions about the calibration points. Synthetic data without noise appears more
realistic when looking at the eye movement animations.
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Figure 9: Power Spectral Densities (PSDs) of synthetic gaze jitter
(SJ01, without eye tracker noise), above, and veridical data (US11)
below. For this pairing, P=0.16 suggesting very low spectral co-
herence between the two signals.

Extracting the pilot data stream from the complete list of pairings
and using it as a blocking factor, we conducted a one-way ANOVA
on power considering the type of data stream as the fixed factor
at 3 levels. For the pilot data (PD), a significant effect was noted
(F(2,371)= 22.2, p< 0.01), with mean power significantly lower
between the pilot data (PD) and jitter data (SJ) pairings. Pairwise
t-tests with Bonferroni correction showed a significant difference
between SJ and each of the US (p<0.01) and SN (p<0.01) mean
power similarities. No significant difference was observed between
the SN and US data streams meaning that the mean cross spectral
density power between the pilot data and each of the user study and
synthetic data streams (with noise) was not statistically different.

Similar results were obtained when each of the three other data
streams were used as blocking factors. What the results indicate is
that, on average, the stochastic properties of the synthetically gener-
ated signal are similar to veridical data, when simulated eye tracker
noise is present. Omitting eye tracker noise from the simulation
produces a stochastically different signal.

6 Rendering Synthetic Data

For rendering of synthetic gaze, whether for eye tracker algorithm
testing as is the current objective, or alternatively for virtual char-
acter animation, the synthetic stream of eye movement positions

(x,y, t) generated by the above stochastic model can effectively be
treated a series of “look points” projected onto a virtual image plane
in front of the avatar or eye model. Similarly, gaze data captured
by an eye tracker, often normalized, can also be used to drive the
animation, although because of the inherent noise present in the sig-
nal, resulting animations are much too jittery to be believable. Fig-
ure 8 shows the composite distribution of sampled raw data: both
veridical and synthetic data augmented with noise show similarly
large spatial distributions about the calibration points. Meanwhile,
the synthetic data rendered only with microsaccadic jitter appears
more realistic when looking at the eye movement animations. To
produce believable synthetic eye movements, therefore, the signal
provided to the renderer must be such that fixations do not include
the eye tracker noise in fixations modeled by (2).

7 Discussion & Limitations

Statistical analyses of the synthetic data regarding its resultant main
sequence (∆t=2.35θ +42), when processed with just the Savitzky-
Golay filter, shows that the main sequence linear fit: (a) matches the
main sequence intercept (1) reported in the literature (via statistical
bootstrapping), and (b) matches the main sequence linear fits of
both sets of veridical data. We are confident that our synthetic data
can readily be used for testing event detection filters. Once mea-
surement noise is removed from the simulation, the resultant data
stream should be suitable for rendering synthetic eye movements.

Current statistical analysis is largely limited by the sampling rate
(60 Hz) of the eye tracker. Following Nyquist’s theorem, we are
limited in observation of saccades of 33 ms minimum duration.
Clearly this will miss much shorter saccades. We will revisit our
modeling and evaluation methods with a 150 Hz tracker from Gaze-
point, which will allow detection of saccades of 13 ms duration.

8 Conclusion

We provide a stochastic model of gaze that is suitable for both eye
movement animation rendering and for testing event detection fil-
ters. The latter utility was demonstrated by testing two filter com-
binations and showing that the inclusion of the Butterworth filter
tends to overestimate saccade durations, if not used carefully. The
former utility was demonstrated by rendering eye movements for
subsequent testing of eye tracking gaze point estimation algorithms.
We showed empirically that rendering data directly output by the
eye tracker would be unrealistically noisy. A more reasonable eye
movement synthesis model must separate measurement noise from
underlying (microsaccadic) jitter associated with fixations.
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