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ABSTRACT

The spatietemporal characteristicof eye movementsvary
according tothe activity the user of a cartographic map is
performing. In this paper, we use these eye movement
characteristicso automatically detedhe map user’s activity, an
approach withgreatpotential in gazassistive mapniterfaces A
dataset of 587 eye movement recordings fronpdrficipantsvas
used to train ah crossvalidate a support vector machine (SVM)
classifier over 229 features The classifiercan distinguish 6
common mapactivitieswith an accuracy of approx8%.
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Figure 1. From eye movements to gazkased assistance.

The processing hierarchy depicted Figure 1 illustrates the
required steps for activity recognition from eye movements on
maps. We track a user’'s gaze while she is pursuing a map activity.
Raw eye movements are preprocessed and dtabssifto basic
events (blinks, fixations, saccades). A set of features is computed
and used in the fourth step as input for the classification.

In this paper we elaborate on the idea of using eye tracking as dn the remainder ofhis papemwe describe ouapproach tayaze-

modality for the interaction with cartographic maps. By
processing the user's gaze positionr@attime we can design
intelligent and efficient gazbased user interfacgs; 2].

Research on map perception has demonstrated that theeople
visually explore maps is influenced by several factors: the
stimulus[3], the user’'s cognitive stafd], and group differences

based activity recognition on maps. We report onan eyetracking
experiment in which 587 gaze recordings of 6 different tasks were
collected from 17 participants. The results show that a support
vector machine (SVM) classifier is able to distinguish between 6
common map activities with an accuracy opagx. 78%.

2. RELATED WORK

[5]. Technically, these differences in visual map exploration are \/grigus aproaches and application scenarios for activity

reflected in the spatitemporal characteristics of eye movement
patterns. Herewe are specifically interested in the usertsivity
(as indication for hecognitive statg Bulling et al. have shown

recognition have been proposedhcluding activity recognition
from movement in geographic spafg. Similar to gazévased
activity recognition, the raw data here are a sequence of spatial

that eye movement patterns can be used to recognize genergjositions. However, with a iacity of 30-500°/s[8] (p. 23), the

office activities[6]. However, activities on maps are different.
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saccadic movements of the eye are very different to movements in
geographicspace. In addition, activities related to motion tracks
can be assumed tmccuron a road network, which is in general
not possible for gaze.

With current eye tracking technology it is possible to actiess
stream of gaze data in reahe, whichin turn allows for using
gaze as an input modalitfthese gazbased interfaces caoe
designed withexplicit or implicit interaction[9]. During explicit
interaction, the user intentionally gazes at a certain position with
the goalof triggeringan interaction, such as selecting a zéom



position by gaze[l]. Implicit interaction on the other had, 3.3 Tasks and Map Material

records the user's gaze duringgularinteraction and, at SOme  Thg following principles guided the selection of map material:
later time, uses this information to adapt to the user’'s needs. An

example for an implicit gazeased gednterface is the a) All maps must be taken from tlsame cartographic product.

GeoGazemarks approag?i. In this paperwe address what we Our classifier should distinguish activities, not map designs.
believe is he biggestcurrent challengdor implicit gazebased ~ P) Participants should - befamiliar with the cartographic
interfacesthe correct interpretation of gaze in terms of activities. product. _

c) For tasks involving search, the relevant feature type should
For general office activities, such as writing, readingapying be distributed over the whole map extent.
gazebased activity recognition has already been proposed byd) Participatts should beunfamiliar with the geographic area
Bulling et al. [6]. Similar to our work,they chose a machine shown in the stimulus, bdamiliar with the language and

learning approach and achieved recall values between 62% and  cultural context of the area.
83%, depending on the activity. In contrastota researchthey
used electroculographyinstead of videdbased eye trackingnd
trained the classifier withiecordings of 5 minutes lengtffhe
most obvious difference to our work, however, are the types of
activities used. It is not clear whether a classifier &itheptable
accuray can be learned for map activities

Based on these principles, we selected map material from Google
Maps™ in the classical styfe All maps were choserfrom
Germany or Austria, since all participants were from Switzerland
and native German speakershe following six tasks were
selectedo provoke six activities:

. . . . Task 1. Free exploration: “You have 20 seconds for exploring
Gaze map matching was investigated as the problem of matching  4¢ map. You can look at whatever yountia6 stimuli (3
gaze to the road a personiispecting[10]. Thisis a purely urban, 3 rural areas).

geometric problem and thus on a lower semantic level thanyagy 2. (Global) search: “On the following map, please search
activity recognition. On a higher semantic level, eye tracking is for X", where X was a point of interest. 9 stimuli (urban
also used irspatial cognition research, for instance daplaining areas containing at least 30 labeled points). Only trials taking
the cognitive processes involved in wayfind[dd]. A recognizer at least 20 seconds were used for ahalysis. In 6 stimuli,

for activities could help to automate the analyses of the data theobject to searcfor wasmissingon the map

collected in such empirical studies. Task 3. Route planning: “Do you see X and Y? Please, plan the

shortest route from X to Y”. 6 stimuliandomly selected

3. DATA COLLECTION from 8 prepared stimuli, each covering one direction of
3.1 Hardware and Software Setup searcR. This $iould ensure that the classifier abstracts from
The hardware utilized for the experiment consisted of the SMI the direction.In the preview phase, the labels of X and Y
headmounted eye tracking glasses with a gaze captteeofa30 were shown on a white screen at the exact position where
Hz!. This relatively low frequency was chosen with the goal of they would later appear in the stimulus.
mobile systems in mindThe data were transmitted via a USB Task 4. Focused search: “Do you see your position (the blue
cable to a laptop, designated only for gaze recording. Arelsin dot)? Please, search for the three closest Z”, where Z is an
was placed at a distance of 65 c¢m to the stimulus in order to object type 5 stimuli, urban areasAs preview, the blue dot
providestability. The stimulus was presented o84 widescreen was shown on a white screen.
monitor (1920x1200 pixels) The experiment was controlled Task 5. Line following: “Do you see X? Please, follow X from
through our own software frameworkhat is able to choose a North to South and count the number of intersestipwhere
random set of test cases and present the stimuli. X is a street name, and the direction of the street was

.. different for each stimulus (like in task 3). Each participant
3.2 Participants and Procedure was shown 6 out of 8 available stimuli. The label of the street
19 participants took part, 2 were excluded due to calibration at the start position was shown as preview.
errors. From the remaining 17 participants, 10 were female. TheTask 6. Polygon comparison: “Do you see X and Y? Please
average age waxs years (+8.7)and all were university students, compare the areas of these two lakes and name the bigger
or already holding a university degree. None of them could be  one”. 4 stimuli, each covering one direction of comparison.
considered an expert map user The preview consisted of a white screen with two labels X
Each participant had 36 trials in total, taken from the 6 tasdes ( and Y at the true position of the lakes.

section3.3) and presented in randomized order, where no two
sucessive trials were from the same tadkfter a trial, a 4. METHODOLOG Y

recalibration was performed if necessaggch trial consisted of Preprocessing

three phases: Three basic eye movement events were computed by the SMI

1) Instruction phasel the participant was presented a textual software: saccades, fixations, and blinks. Saccades are
description of the task (in German) and could ask questions. characterized by rapid eye movements, during which visual

2) Preview phase a preview showing small parts of the perception is reduced. New information can be obtained during
stimulus was shown. The goal of this phase was to clearly
separate the activity to be analyzed from an orientation ,
activity beforehand. At the end of the preview phase the
participant was asked to fixate a certain point.

3) Task phase: the stimulus was shown, and the eye movements
were recorded while the participant solved the task. 3 From NorthWest to SouttEast, North to South, NorBast to
SouthWest, East to West, plus the inverse direction for each.
The randomizer balanced the distribution of trials for the 8

1 http://www.smivision.com/en htm stimuli over all participgnts.

http://maps.google.com/in 2013, Google introduced a new
Google Maps design. We used the classical design for our study
to ensure participants were familiar with it.
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fixations, which occur in between saccades when the eyes rems

relatively still for a short period of timgl2]. Blinks occur when
the eyes close and then quickly opeaia.

Blink-, fixation-, and saccade-based features

In order to capture the spatiemporal characteristics of eye

movementsa total of 229 featureserecomputed for each of the
eye tracking recordingseeTablel). The first three types arge

movement features based on blinks, fixations, and saccade
These are standard measuswhich definitions can be found

theeye tracking literaturgs].

The saccade classification scheme

The remainingtypesof featuresare advanced, some inspired by

[6] and some new. These measures try to capture the geometry|
the scanpath by analyzing succeeding saccades wr.t the

directions and amplitud&dwo classification schemes for saccades

are used in this context, where small and large amplitude al

distinguished based on a threshold of 1.1° (as sugges{ad]hy

16-classification (c16 irTable 1): eight cardinal directions,
each for small and large amplitude

8-classificaton (c8 inTablel): four cardinal directions, each

for small and large amplitude.

Saccadic direction-based features

Based on c8, eight stdets of saccades were degh For each of
these subsets, a number of sacdaaked features were computed
(based on amplitude, duration, skewness, and frequency).

In order to handle the cases where saccades ocalteedhtely in
opposite directionswe compared the angles of eyetwo

sequential saccadeteading to aninversity measure € [0,1]).
Mean, minimum, maximupand variancevere considered, once

taking all saccades into accouand once only folarge saccades.

Similardy, the category inversity measure counts how oftéwo
succeeding saccadbhave anopposite directiorfw.r.t. c8 or c16)

normalized to the sequence lengdtfie applied this measure once
taking all saccades into account and once only for long sagcade
and for both classification schemes

Neighboring direction counts the number obccurrence of

in Blink -based features
mean, min, max, var duration ) 4
blinks
rate 1
Fixation-based features
duration, dispersion
mean, min, max, var dispersion X, o 16
S. dispersion Y fixations
frequency 1
Saccadebased features
mean, min, max, var| amplitude, duration 8
nf
" skewness amplitude 1
Ir saccades
frequency 1
© g ratio amplitude 1
Saccadic directionbased features
mean, min, max, var| amplitude, duration 64
i category
skewness amplitude (8) 8
c
frequency 8
mean, min, max, var, inversity 8
. i cl6w2 occ, saccades 4
category inversity '
c8w2 occ |arge.
] ] o c16w36 occ, saccades [ g
neighboring direction
c8w3-6 occ
String sequencebased features
size cléwl-4, c8wkt4d 16
. cl6wl-4 occ, saccades
min, max | 32
c8wl-4 occ large
| _ c16wZk4 occ, saccades
Smean, var, [mamin| 48
c8wl-4 occ
Total features 229

saccade subequences where each two sequential saccades fall

the same or imeighboringdirection categoriegbased on c8 or
c16 respectively)The subsequencebave lengths between 3 and
6 (sliding window. Neighboring direction is then normalized
the sequence length

String sequence-based features

Table 1. Features used to train the classifier.
Rows are interpreted as {cell 1} {cell 2} ofcell 3}.
First row, for instance: “mean duration of blinks”

5. RESULTS

Two string sequences were created, one for c8 and one for c16612 datasetwere collected in totaR2 successful trials of task 2

where each category was represented by one letter. Bothwere excluded because they were shorter than 20 seconds. 3 trials

sequencewereanalyzed with a sliding windwo algorithm(for all
lengths between 1 and.4Jhe algorithm sequentially moves from
left to right and createsubstrings, based on the window size.
The number of occurrences of ssiings in the sequence is
counted.

For all four window sizes we computéde number of created
string patterns (c16w4 size), the number of minimum (c16wl
min occ) and maximum occurrences of a string pattern (cbwl

max occ), the difference between minimum and maximum

occurrences (clé6wa min diff) as well as the varianagf the
occurrences (c16wa var occ). These features were computed
once taking all saccades into account and once only for lon
saccades.The procedure for deriving string sequehesed
features was inspired 1jg].

500

had to be excluded due to calibration isswesproblems in
understanding the taskhis yieldsin a total of 587 eye movement

recordings (102 task 1, 131 task 2, 100 task 3, 85 task 4, 101 task

5, 68 task 6).All eye movement recordings longer than 20
seconds were cut to the first 20 seconds.

The 229 éatures described in sectidmverecomputed for each of
the 587 datasetsFeatures were linearly scaled to [0;1] over all
trials. We used the LibSVM packader learning the classifier
[14]. In our case, a-Gupport vector classificator {8VC) with
RBF kernelrevealed the best performance. The optinasies for
vy and C were found with an iterative griddedearch using
gstratified 106fold crossvalidation (C=226.23; y=0.0). Results of
the classification are listed ifable 2: in total, 456 trials were
classified correctly (accuracy of 77.7%).



The results look promising: recéall between 63.5% and 98%,

with a recall of less than 75% for only two out of six activities.

For ofice activities, previous work on activity recognition from
gaze[6] has returned recallalueswhich are lower on average 2]
(NULL activity 82%, reading 67%, browsing 62%, writing 73%,
video watching 83%, copying 68%). These results are surprising,
because we had expected map activities to be less distinguishable
than office activities.

The best recall is achieved for polygon comparisohis is 3]
probably due to the very characteristic large inverse saccadeg
between the compared objects. Free exploration and (global)
search have high recathlues(80.4%, 85.5%). The most incorrect
classifications for both of them happen with the respeatiher.

We had expected similarity between them, as both activities arel4]
not restrained to certain areas of the map.

Focused search has the lowest recall of all (63.5%), which is
mainly due to confusion with global search and free exploration.
Not surprisngly, route planning seems difficult to distinguish
from line following, because planning a route implies following (5]
linear features.

true activity preci
1 2 3 4 6 sion [6]
21 8 10 3 11 0 | 759
2l 2 14 ‘112 5 18 3 0 | 737
sl3 1 2 [8 1 19 0 |79 g
8l 4 7 5 54 1 0 | 761
£l s 20 1 [ 76 1 | 760
6 1 0 0 | 67 | 985
Y 102 131 100 85 101 68

recal 804 855 650 635 753 985 (8]
accuracy = 77.7%

1: free exploration, 2: search, 3: route planning,
4. focused search, 5: line following, 6: polygon comparison.  [9]

Table 2. Confusion matrix for SVM classifier (10-fold cross
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and achieved a recognition accuracy of 77.Thiaugh our results  [11] Kiefer, P., Giannopoulos, I., and Raubal, M., 2013. Where

on activity recognition look promising number of open issues
for future researcremain:

Does the approach work for other cartographic products? How
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Transactions in GI€n print)

can we solve the segmentation problem if different activities [12] Rayner, K., 1998. Eye movements in reading and

occur unseparated? What is the best time threshold for activity
recognition?How can highetevel cognitive states (intentions) be
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Bulletin 124, 3 (Nov), pp. 37322.

inferred?Can we use the classifier learnfedm one user group [13] Zangemeister, W., Sherman, K., and Stark, L., 1995
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10091025.
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