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ABSTRACT  
The spatio-temporal characteristics of eye movements vary 
according to the activity the user of a cartographic map is 
performing. In this paper, we use these eye movement 
characteristics to automatically detect the map user’s activity, an 
approach with great potential in gaze-assistive map interfaces. A 
dataset of 587 eye movement recordings from 17 participants was 
used to train and cross-validate a support vector machine (SVM) 
classifier over 229 features. The classifier can distinguish 6 
common map activities with an accuracy of approx. 78%.  

Categories and Subject Descriptors 
I.2.1 [Artificial Intelligence ]: Applications and Expert Systems – 
cartography 

General Terms 
Algorithms, Experimentation, Human Factors 

Keywords 
Activity recognition, gaze-based assistance, eye tracking, support 
vector machine, geographic human-computer interaction 

1. GAZE-BASED ASSISTANCE ON MAPS  
In this paper we elaborate on the idea of using eye tracking as a 
modality for the interaction with cartographic maps. By 
processing the user’s gaze position in real-time we can design 
intelligent and efficient gaze-based user interfaces [1; 2]. 

Research on map perception has demonstrated that the way people 
visually explore maps is influenced by several factors: the 
stimulus [3], the user’s cognitive state [4], and group differences 
[5]. Technically, these differences in visual map exploration are 
reflected in the spatio-temporal characteristics of eye movement 
patterns. Here, we are specifically interested in the user’s activity 
(as indication for her cognitive state). Bulling et al. have shown 
that eye movement patterns can be used to recognize general 
office activities [6]. However, activities on maps are different. 

 
Figure 1. From eye movements to gaze-based assistance. 

The processing hierarchy depicted in Figure 1 illustrates the 
required steps for activity recognition from eye movements on 
maps. We track a user’s gaze while she is pursuing a map activity. 
Raw eye movements are preprocessed and classified into basic 
events (blinks, fixations, saccades). A set of features is computed 
and used in the fourth step as input for the classification. 

In the remainder of this paper we describe our approach to gaze-
based activity recognition on maps. We report on an eye-tracking 
experiment in which 587 gaze recordings of 6 different tasks were 
collected from 17 participants. The results show that a support 
vector machine (SVM) classifier is able to distinguish between 6 
common map activities with an accuracy of approx. 78%. 

2. RELATED WORK  
Various approaches and application scenarios for activity 
recognition have been proposed, including activity recognition 
from movement in geographic space [7]. Similar to gaze-based 
activity recognition, the raw data here are a sequence of spatial 
positions. However, with a velocity of 30-500°/s [8] (p. 23), the 
saccadic movements of the eye are very different to movements in 
geographic space. In addition, activities related to motion tracks 
can be assumed to occur on a road network, which is in general 
not possible for gaze. 

With current eye tracking technology it is possible to access the 
stream of gaze data in real-time, which in turn allows for using 
gaze as an input modality. These gaze-based interfaces can be 
designed with explicit or implicit interaction [9]. During explicit 
interaction, the user intentionally gazes at a certain position with 
the goal of triggering an interaction, such as selecting a zoom-in 
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position by gaze [1]. Implicit interaction, on the other hand, 
records the user’s gaze during regular interaction and, at some 
later time, uses this information to adapt to the user’s needs. An 
example for an implicit gaze-based geo-interface is the 
GeoGazemarks approach [2]. In this paper, we address what we 
believe is the biggest current challenge for implicit gaze-based 
interfaces: the correct interpretation of gaze in terms of activities. 

For general office activities, such as writing, reading or copying, 
gaze-based activity recognition has already been proposed by 
Bulling et al. [6]. Similar to our work, they chose a machine 
learning approach and achieved recall values between 62% and 
83%, depending on the activity. In contrast to our research, they 
used electrooculography instead of video-based eye tracking and 
trained the classifier with recordings of 5 minutes length. The 
most obvious difference to our work, however, are the types of 
activities used. It is not clear whether a classifier with acceptable 
accuracy can be learned for map activities. 

Gaze map matching was investigated as the problem of matching 
gaze to the road a person is inspecting [10]. This is a purely 
geometric problem and thus on a lower semantic level than 
activity recognition. On a higher semantic level, eye tracking is 
also used in spatial cognition research, for instance for explaining 
the cognitive processes involved in wayfinding [11]. A recognizer 
for activities could help to automate the analyses of the data 
collected in such empirical studies. 

3. DATA COLLECTION  
3.1 Hardware and Software Setup 
The hardware utilized for the experiment consisted of the SMI 
head-mounted eye tracking glasses with a gaze capture rate of 30 
Hz1. This relatively low frequency was chosen with the goal of 
mobile systems in mind. The data were transmitted via a USB 
cable to a laptop, designated only for gaze recording. A chin rest 
was placed at a distance of 65 cm to the stimulus in order to 
provide stability. The stimulus was presented on a 24” widescreen 
monitor (1920x1200 pixels). The experiment was controlled 
through our own software framework that is able to choose a 
random set of test cases and present the stimuli.  

3.2 Participants and Procedure 
19 participants took part, 2 were excluded due to calibration 
errors. From the remaining 17 participants, 10 were female. The 
average age was 28 years (±8.7), and all were university students, 
or already holding a university degree. None of them could be 
considered an expert map user. 

Each participant had 36 trials in total, taken from the 6 tasks (see 
section 3.3) and presented in randomized order, where no two 
successive trials were from the same task. After a trial, a 
recalibration was performed if necessary. Each trial consisted of 
three phases: 

1) Instruction phase: the participant was presented a textual 
description of the task (in German) and could ask questions. 

2) Preview phase: a preview showing small parts of the 
stimulus was shown. The goal of this phase was to clearly 
separate the activity to be analyzed from an orientation 
activity beforehand. At the end of the preview phase the 
participant was asked to fixate a certain point. 

3) Task phase: the stimulus was shown, and the eye movements 
were recorded while the participant solved the task. 

1 http://www.smivision.com/en html 

3.3 Tasks and Map Material 
The following principles guided the selection of map material: 

a) All maps must be taken from the same cartographic product. 
Our classifier should distinguish activities, not map designs. 

b) Participants should be familiar with the cartographic 
product. 

c) For tasks involving search, the relevant feature type should 
be distributed over the whole map extent. 

d) Participants should be unfamiliar with the geographic area 
shown in the stimulus, but familiar with the language and 
cultural context of the area. 

Based on these principles, we selected map material from Google 
MapsTM in the classical style2. All maps were chosen from 
Germany or Austria, since all participants were from Switzerland 
and native German speakers. The following six tasks were 
selected to provoke six activities: 

Task 1. Free exploration: “You have 20 seconds for exploring 
the map. You can look at whatever you want”. 6 stimuli (3 
urban, 3 rural areas). 

Task 2. (Global) search: “On the following map, please search 
for X”, where X was a point of interest. 9 stimuli (urban 
areas containing at least 30 labeled points). Only trials taking 
at least 20 seconds were used for the analysis. In 6 stimuli, 
the object to search for was missing on the map. 

Task 3. Route planning: “Do you see X and Y? Please, plan the 
shortest route from X to Y”. 6 stimuli, randomly selected 
from 8 prepared stimuli, each covering one direction of 
search3. This should ensure that the classifier abstracts from 
the direction. In the preview phase, the labels of X and Y 
were shown on a white screen at the exact position where 
they would later appear in the stimulus. 

Task 4. Focused search: “Do you see your position (the blue 
dot)? Please, search for the three closest Z”, where Z is an 
object type. 5 stimuli, urban areas. As preview, the blue dot 
was shown on a white screen. 

Task 5. Line following: “Do you see X? Please, follow X from 
North to South and count the number of intersections”, where 
X is a street name, and the direction of the street was 
different for each stimulus (like in task 3). Each participant 
was shown 6 out of 8 available stimuli. The label of the street 
at the start position was shown as preview. 

Task 6. Polygon comparison: “Do you see X and Y? Please 
compare the areas of these two lakes and name the bigger 
one”. 4 stimuli, each covering one direction of comparison. 
The preview consisted of a white screen with two labels X 
and Y at the true position of the lakes. 

4. METHODOLOG Y 
Preprocessing 
Three basic eye movement events were computed by the SMI 
software: saccades, fixations, and blinks. Saccades are 
characterized by rapid eye movements, during which visual 
perception is reduced. New information can be obtained during 

2 http://maps.google.com/. In 2013, Google introduced a new 
Google Maps design. We used the classical design for our study 
to ensure participants were familiar with it. 

3 From North-West to South-East, North to South, North-East to 
South-West, East to West, plus the inverse direction for each. 
The randomizer balanced the distribution of trials for the 8 
stimuli over all participants. 
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fixations, which occur in between saccades when the eyes remain 
relatively still for a short period of time [12]. Blinks occur when 
the eyes close and then quickly open again. 

Blink-, fixation-, and saccade-based features 
In order to capture the spatio-temporal characteristics of eye 
movements, a total of 229 features were computed for each of the 
eye tracking recordings (see Table 1). The first three types are eye 
movement features based on blinks, fixations, and saccades. 
These are standard measures for which definitions can be found in 
the eye tracking literature [8]. 

The saccade classification scheme 
The remaining types of features are advanced, some inspired by 
[6] and some new. These measures try to capture the geometry of 
the scanpath by analyzing succeeding saccades w r.t their 
directions and amplitude. Two classification schemes for saccades 
are used in this context, where small and large amplitude are 
distinguished based on a threshold of 1.1° (as suggested by [13]): 

• 16-classification (c16 in Table 1): eight cardinal directions, 
each for small and large amplitude 

• 8-classification (c8 in Table 1): four cardinal directions, each 
for small and large amplitude. 

Saccadic direction-based features 
Based on c8, eight sub-sets of saccades were created. For each of 
these subsets, a number of saccade-based features were computed 
(based on amplitude, duration, skewness, and frequency). 

In order to handle the cases where saccades occurred alternately in 
opposite directions we compared the angles of every two 
sequential saccades, leading to an inversity measure (∈ [0,1]). 
Mean, minimum, maximum, and variance were considered, once 
taking all saccades into account, and once only for large saccades. 

Similarly, the category inversity measure counts how often two 
succeeding saccades have an opposite direction (w.r.t. c8 or c16), 
normalized to the sequence length. We applied this measure once 
taking all saccades into account and once only for long saccades, 
and for both classification schemes. 

Neighboring direction counts the number of occurrences of 
saccade sub-sequences where each two sequential saccades fall in 
the same or in neighboring direction categories (based on c8 or 
c16 respectively). The sub-sequences have lengths between 3 and 
6 (sliding window). Neighboring direction is then normalized to 
the sequence length. 

String sequence-based features 
Two string sequences were created, one for c8 and one for c16, 
where each category was represented by one letter. Both 
sequences were analyzed with a sliding window algorithm (for all 
lengths between 1 and 4). The algorithm sequentially moves from 
left to right and creates sub-strings, based on the window size. 
The number of occurrences of sub-strings in the sequence is 
counted. 

For all four window sizes we computed the number of created 
string patterns (c16w1-4 size), the number of minimum (c16w1-4 
min occ) and maximum occurrences of a string pattern (c16w1-4 
max occ), the difference between minimum and maximum 
occurrences (c16w1-4 min diff) as well as the variance of the 
occurrences (c16w1-4 var occ). These features were computed 
once taking all saccades into account and once only for long 
saccades. The procedure for deriving string sequence-based 
features was inspired by [6]. 

Blink -based features 

mean, min, max, var duration 
blinks 

4 

rate  1 

Fixation-based features 

mean, min, max, var 
duration, dispersion, 

dispersion X, 
dispersion Y fixations 

16 

frequency  1 

Saccade-based features 

mean, min, max, var amplitude, duration 

saccades 

8 

skewness amplitude 1 

frequency  1 

g-l ratio amplitude 1 

Saccadic direction-based features 

mean, min, max, var amplitude, duration 
category 

(c8) 

64 

skewness amplitude 8 

frequency  8 

mean, min, max, var inversity 

saccades, 

large-
saccades 

8 

category inversity  
c16w2 occ,  

c8w2 occ  

4 

neighboring direction 
c16w3-6 occ,  

c8w3-6 occ 

8 

String sequence-based features 

size c16w1-4, c8w1-4 

saccades, 

large-
saccades 

16 

min, max 
c16w1-4 occ,  

c8w1-4 occ 
32 

mean, var, |max-min| 
c16w1-4 occ,  

c8w1-4 occ 
48 

Total features 229 

Table 1. Features used to train the classifier. 
Rows are interpreted as {cell 1} {cell 2} of {cell 3}. 
First row, for instance: “mean duration of blinks”  

 

5. RESULTS 
612 datasets were collected in total. 22 successful trials of task 2 
were excluded because they were shorter than 20 seconds. 3 trials 
had to be excluded due to calibration issues or problems in 
understanding the task. This yields in a total of 587 eye movement 
recordings (102 task 1, 131 task 2, 100 task 3, 85 task 4, 101 task 
5, 68 task 6). All eye movement recordings longer than 20 
seconds were cut to the first 20 seconds. 

The 229 features described in section 4 were computed for each of 
the 587 datasets. Features were linearly scaled to [0;1] over all 
trials. We used the LibSVM package for learning the classifier 
[14]. In our case, a C-support vector classificator (C-SVC) with 
RBF kernel revealed the best performance. The optimal values for 
γ and C were found with an iterative gridded-search using 
stratified 10-fold cross-validation (C=226.23; γ=0.0). Results of 
the classification are listed in Table 2: in total, 456 trials were 
classified correctly (accuracy of 77.7%). 
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The results look promising: recall is between 63.5% and 98%, 
with a recall of less than 75% for only two out of six activities. 
For office activities, previous work on activity recognition from 
gaze [6] has returned recall values which are lower on average 
(NULL activity 82%, reading 67%, browsing 62%, writing 73%, 
video watching 83%, copying 68%). These results are surprising, 
because we had expected map activities to be less distinguishable 
than office activities. 

The best recall is achieved for polygon comparison. This is 
probably due to the very characteristic large inverse saccades 
between the compared objects. Free exploration and (global) 
search have high recall values (80.4%, 85.5%). The most incorrect 
classifications for both of them happen with the respective other. 
We had expected similarity between them, as both activities are 
not restrained to certain areas of the map.  

Focused search has the lowest recall of all (63.5%), which is 
mainly due to confusion with global search and free exploration. 
Not surprisingly, route planning seems difficult to distinguish 
from line following, because planning a route implies following 
linear features. 

 

 true activity  preci
sion 

pr
ed

ic
te

d 
ac

tiv
ity

 

 1 2 3 4 5 6 

1 82 10 3 11 2 0 75.9 

2 14 112 5 18 3 0 73.7 

3 1 2 65 1 19 0 73.9 

4 4 7 5 54 1 0 76.1 

5 1 0 21 1 76 1 76.0 

6 0 0 1 0 0 67 98.5 

 ∑ 102 131 100 85 101 68  

recall 80.4 85.5 65.0 63.5 75.3 98.5  

accuracy = 77.7% 

1: free exploration, 2: search, 3: route planning, 
4: focused search, 5: line following, 6: polygon comparison. 

Table 2. Confusion matrix for SVM classifier (10-fold cross-
validation), precision and recall in %. 

 

6. CONCLUSION AND OUTLOOK  
We began this research with the idea of recognizing map activities 
from gaze. We approached the problem with an SVM classifier 
and achieved a recognition accuracy of 77.7%. Though our results 
on activity recognition look promising, a number of open issues 
for future research remain: 

Does the approach work for other cartographic products? How 
can we solve the segmentation problem if different activities 
occur unseparated? What is the best time threshold for activity 
recognition? How can higher-level cognitive states (intentions) be 
inferred? Can we use the classifier learned from one user group 
for other users? Can map activities be distinguished from other 
activities? Do users accept gaze-assistive map user interfaces? 
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