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ABSTRACT
This paper introduces gaze map matching as the problem of
algorithmically interpreting eye tracking data with respect
to geographic vector features, such as a road network shown
on a map. This differs from previous eye tracking studies
which have not taken into account the underlying vector
data of the cartographic map. The paper explores the chal-
lenges of gaze map matching and relates it to the (vehicle)
map matching problem. We propose a gaze map matching
algorithm based on a Hidden Markov Model, and compare
its performance with two purely geometric algorithms. Two
eye tracking data sets recorded during the visual inspection
of 14 road network maps of varying realism and complexity
are used for this evaluation.

Categories and Subject Descriptors
I.5 [Pattern Recognition]: Models; I.2.1 [Artificial In-
telligence]: Applications and Expert Systems—Cartogra-
phy

General Terms
Algorithms, Measurement

Keywords
Eye tracking, map matching, gaze-based assistance

1. INTRODUCTION
Eye trackers are used to measure the visual attention of

individuals. They have a number of potentials for studying
and improving the way humans interact with the interface
of a geographic information system (GIS). On the one hand,
they offer valuable data that can be exploited in usability
studies. In the geovisualization community, for instance,
gaze data analyses have been combined with standard us-
ability metrics to evaluate the effectiveness and efficiency of
interactive map interface designs [3, 4].
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Another application of eye tracking consists in real-time
map interaction, such as gaze-based zooming and panning
[27], or using the user’s gaze history as visual clue for better
orientation on a map [9]. These gaze-based assistive tech-
nologies are specifically interesting for the support of geo-
spatial tasks in scenarios where interaction possibilities are
restricted, such as wayfinding with a mobile map [13].

In both, usability studies and gaze-based assistance, pre-
vious work on eye tracking for GIS has typically interpreted
gaze with respect to few areas of interest (AOI) which were
not originally in the underlying vector data. For instance,
the analysis presented in [3] interprets the gaze data as a se-
quence between control elements of a GIS (map panel, layer
selection panel, query results dialog, etc.).

In this paper we argue that, especially for the case of inter-
active maps where the map content may change frequently,
an intelligent interpretation of gaze should take the current
contents of the map into account: ‘which map object, i. e.,
which road, river, lake, point of interest etc., was (or is) the
user inspecting?’.

An algorithm that automatically answers this question
would take a sequence of gaze points as an input and match
these points with the vector features displayed on a map. To
the authors’ best knowledge, this problem of mapping gaze
to geographic vector features (the gaze map matching prob-
lem) has never been addressed in literature before. From
a geometric point of view, it is related to the problem of
matching a sequence of vehicle position measurements to
the road segments most probably travelled (known as ‘map
matching’ in literature) [19]. Problems that make gaze map
matching challenging include hardware inaccuracy, bad cali-
bration, the permanent unintentional movements of the eye,
and ambiguity resolution when a gaze point is in the vicinity
of more than one map element.

The paper compares three gaze map matching algorithms:
a naive algorithm, one working with a sliding window, and
one probabilistic algorithm based on a Hidden Markov Model
(HMM). A dataset of eye tracking data collected from two
participants during the visual inspection of 14 road network
maps of varying realism and complexity is used for the eval-
uation. For this inspection task, the HMM algorithm per-
formed better than the naive algorithms. We argue that
this is due to the possibility to parameterize the HMM to
the task, whereas the other two algorithms are purely geo-
metric.

The paper is structured as follows: section 2 gives a basic
introduction to eye tracking, its applications for geo-spatial
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Figure 1: Gazes (red small dots), connected fixation
sequence (blue large dots), and road network.

interfaces, and lists related work in the related areas of (ve-
hicle) map matching and conflation. Section 3 introduces
the gaze map matching problem and discusses its challenges
and interdependence with the user’s task. Algorithms for
gaze map matching are described in section 4 and evaluated
with a dataset reported on in section 5. A conclusion and
outlook section closes the paper.

2. RELATED WORK

2.1 Introduction to Eye Tracking
Eye tracking, i. e., the process of measuring and analyzing

where an individual is gazing at, is a well-established re-
search method in a number of fields. Reading research, for
instance, has been one of the first fields to use eye tracking
in their studies [20].

There are several techniques eye trackers can build on
to capture the eyes’ movements. The most common one
uses the principle of infrared corneal reflection. An infrared
illuminator causes a reflection on the eye (or on both eyes for
binocular devices), this reflection is captured by a camera,
and the point of gaze is computed using image processing
and a mathematical model of the eye [7].

Eye tracking data come as sequence of gazes, i. e., (x,y)
coordinates in the reference frame of the system. For remote
eye trackers calibrated to a computer display, the (x,y)-point
represents screen coordinates. For head-mounted eye track-
ers, the gaze coordinates are measured w.r.t. a video of a
front-facing environment camera.

An established approach in eye tracking is to pre-process
gazes by grouping some of them to fixations (see Fig. 1). A
fixation occurs when the eyes remain relatively still over a
certain amount of time, which is the time when new infor-
mation can be perceived. The time threshold neccessary in
order to obtain new information is task-dependent. In our
case, the fixation threshold was selected as 150 milliseconds
after pre-tests. Saccades are very fast movements of the eyes
and occur between fixations. Even when fixating to a certain
location, the eyes are never still. Small saccades (so-called
mini-saccades) can be measured continuously. Refer to [7]
and [20] for introductory texts on eye tracking.

2.2 Eye Tracking in HCI and GIScience
Human-Computer-Interaction (HCI) uses eye tracking me-

thodology in two ways: on the one hand, gaze serves as addi-

tional data for usability analyses. The data recorded during
an empirical usability experiment are later analyzed in or-
der to, for instance, improve the visual design of a graphical
user interface.

On the other hand, eye trackers can also be accessed in
real-time, thus serving as an additional input device. The
user can trigger an interaction with the system using her
gaze, which allows for easy, natural, and fast ways of in-
teraction [11, 29]. Novel interaction concepts based on eye
tracking are continuously evolving, using both, explicit and
implicit interactions. According to Schmidt [24], explicit in-
teraction refers to the intentional direct manipulation of a
computer system by the user, whereas implicit interaction
is defined as an action that is not primarily intended to be
an interaction, but is registered by the system as such. An
example for explicit interaction would be eye-typing [16].
An example for implicit interaction would be a system that
pre-caches geo data depending on the map position gazed at
[1]. Section 3.1.2 will develop a vision of a system that uses
implicit interaction, building on top of gaze map matching.

In geographic information science (GIScience), eye track-
ers are mostly used for the purpose of evaluation. Early eye
tracking studies in cartography had the goal of evaluating
different map designs [26]. One important finding from this
era is that gaze behavior on maps depends on the partici-
pant’s task. More recent studies include the evaluation of
interactive map interface designs [3, 4], or the usability of
cartographic animations [18]. Other studies have used eye
tracking to investigate spatial decision making in lab studies
[32], and to perform real-world wayfinding studies in both,
indoor [25] and outdoor [13] environments.

Gaze-based interaction with cartographic maps has been
proposed on a content-independent level. For instance, [27]
implement explicit gaze-based panning by automatically cen-
tering to the user’s gaze position after a certain fixation du-
ration. Another approach (GeoGazemarks, [9]) displays an
aggregated gaze history to help the user recall those places
on the map she has interacted with before. The map con-
tent, such as road networks, lakes, or points of interest have
never been taken into consideration. One possible reason
for the lack of gaze-based content-related interaction with
maps could be the inaccuracy of eye trackers and the sac-
cadic movement of the eye.

2.3 Conflation
Conflation refers to the combination of two geodata sets

in order to create another data set that increases spatial
accuracy and consistency. Starting in the 1980s, a number of
methods for conflation have been developed [22]. In general,
these methods can be categorized in vector to vector (closest
to gaze map matching), vector to raster, and raster to raster
data conflation [5]. Several techniques for vector to vector
conflation exist [6, 30], some specialized for the conflation of
two road networks [23].

A gaze track, connected with a line, and a map can be
seen as two geodata sets to which vector to vector confla-
tion could be applied. However, the saccadic movement of
the eye during map perception produces very complex line
strings which, in quite many parts, does not follow any lin-
ear features on the map (see Fig. 1). It can be doubted
whether conflation would return acceptable results for gaze
map matching.
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2.4 Vehicle Map Matching
Literature uses the term ‘map matching’ for the problem

of matching a sequence of (potentially inaccurate) vehicle
position measurements to road segments of a street network
[19]. In the scope of this paper, we refer to this problem as
vehicle map matching. Position is typically measured with
a Global Navigation Satellite System (GNSS). Some spe-
cialized algorithms consider other position methods, such
as WiFi [31]. Besides purely geometric vehicle map match-
ing (e.g., [28]), more advanced algorithms include topology
and/or speed constraints into their reasoning (e.g., [15]). In
the last years, probabilistic methods have gained some pop-
ularity, such as the HMM-based approach presented in [17]
which is the basis of one of our algorithms in section 4.

Gaze map matching has a similar goal as vehicle map
matching, with the decisive difference that, in general, topo-
logical and speed constraints do not apply to gaze data. Sac-
cades from one part of the map to a completely different part
may appear at any time. As an exception, extra knowledge
can be utilized if we know the user is performing a task that
somehow relates to, say, the topology of the network (refer
to section 3.3). Even then, the task model never poses as
strong restrictions as the physical restriction of a vehicle be-
ing forced to travel along the road segments. This excludes
the transfer of most of the vehicle map matching methods
to our problem.

3. GAZE MAP MATCHING
Gaze map matching aims at interpreting eye tracking data

w.r.t. the contents of a cartographic map. The underlying
vector data of the map are used to match the gaze sequence
to the inspected geographic features, such as roads, rivers,
or points of interest.

3.1 Application Scenarios
This paper focusses on the basic algorithmic problem of

gaze map matching. Applications building on top of gaze
map matching have not been implemented yet. To under-
line the benefits of gaze map matching, two potential appli-
cations are sketched in the following.

3.1.1 Usability Analyses
Daniel is a cartographer. He is designing an interactive

online map that should help bicyclists find a safe, conve-
nient, and fast route through the city of Zurich. With an
eye tracking study he has collected gaze data from 10 partic-
ipants. Daniel wonders whether his prototypical map design
helps to clearly separate biking paths from major roads.

Current standard eye tracking analysis software allows to
manually draw polygons (so-called areas of interest, AOI)
in the reference system of the screen, or in a marker-defined
reference system. Figure 2 shows an example screenshot of
the D-Lab software1 with six AOI around major roads on a
paper map. The software can be used to compute statistics
w.r.t. these AOI, such as the percentage of gazes that was
inside one of them.

These statically defined AOI have obvious drawbacks: they
do not work for interactive maps that allow for panning
or zooming, such as the online map designed by Daniel.
They are also ambiguous because they often overlap. Gaze

1http://www.ergoneers.com/

Figure 2: Manually defined areas of interest (AOI)
buffering major roads on a paper map.

map matching, in contrast, would automatically use the ge-
ographic features displayed in the current map extent. No
manual definition of AOI is required, and panning/zomming
are automatically accounted for. An intelligent gaze map
matching algorithm would also disambiguate at intersec-
tions.

3.1.2 Gaze-Based Assistance
Sandy is sitting on a London underground train. She is

wearing her augmented reality glasses with integrated eye
tracking. The glasses show a topological map of the under-
ground network. Sandy starts to inspect the Waterloo line.
After one second, the system recognizes her interest in that
specific line and overlays according additional information,
such as transfer options, and points of interest.

As mentioned in section 1, gaze-based assistance is specif-
ically interesting in situations where interaction possibili-
ties are restricted, which often applies to mobile situations.
From a hardware perspective, eye tracking is becoming in-
creasingly mobile: head-mounted mobile eye trackers are
used in research already today [14], and it is only a small step
for eye tracking to be integrated into mobile consumer prod-
ucts, such as smartphones2 or augmented reality glasses3.

Given this technological background, one can easily imag-
ine systems like the one described in the example. Again,
this requires algorithms that dynamically interpret gaze with
respect to the currently displayed vector features. In con-
trast to ex-post usability analyses, gaze-based assistance re-
quires gaze map matching algorithms that run incremen-
tally, i. e., with an incomplete gaze sequence, and in real-
time. We do not present incremental gaze map matching
algorithms in this paper.

3.2 The Gaze Map Matching Problem
In the previous sections, gaze map matching was described

as the problem of matching eye tracking data to the ge-
ographic vector features displayed on a map. Gazes and
vector features are expressed in different coordinate systems
and, for interactive maps, the projection between the two
may change over time:

2e.g., AppleTM’s patent application, http://www.free
patentsonline.com/y2012/0036433.html (June 29, 2012)
3e.g., the Google GlassTM project, https://plus.google.
com/111626127367496192147 (June 29, 2012)
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Eye Tracking

Fixation Preprocessing

Gaze Map Matching

Task Recognition «Find Shortest
Biking Route»

Usability
Analysis

«Biking paths not
visible enough»

Gaze-Based
Assistance Follow this road

Figure 3: Gaze map matching and task recognition.

Definition 1. A geo-referenced fixation sequence is a time-
indexed sequence φ = 〈 (x0, y0, π0), . . . , (xn, yn, πn) 〉, where
(xt, yt) is the fixation position at time t in the screen coor-
dinate system C s, and πt: C s → Cm denotes the projection
from screen to map coordinate system valid at time t.

As explained in section 2.1, eye tracking research generally
assumes that perception takes place only when the gaze re-
mains still for a minimum amount of time. This is why
fixation sequences are used instead of gazes here. The pre-
processing converting a gaze sequence to a (much shorter)
fixation sequence is omitted here (refer to section 5.1.2). We
can now define the gaze map matching problem as follows:

Definition 2. Let G denote a set of geographic vector fea-
tures, all defined in Cm. Let φ denote a geo-referenced
fixation sequence with projections to Cm. The gaze map
matching problem consists in finding the according feature
sequence γ = 〈g0, . . . , gn 〉 from G ∪ {ω}, where the i-th
element of φ is matched with the i-th element of γ, and
ω is assigned to those fixations that cannot be mapped to
features from G.

Gaze map matching algorithms need the projection informa-
tion to convert from C s to Cm, and to perform any distance
computations that may become necessary (e.g., buffering).
Fixations too far away from any feature may be assigned ω,
i. e., ‘not matchable’.

3.3 Gaze Map Matching and User Tasks
For general scene perception it has been shown that a

person’s gaze behavior is influenced by the task [33]. Early
studies on eye tracking and cartography have indicated that
the same is true for maps [26]: the task a person is solving on
a map will influence her gaze. In the bicycle map example
presented in section 3.1, for instance, a participant told to
find a biking route from A to B will probably look at A,
B, and then follow different route options between them. A
free-viewing task (‘tell me whether you like the visual design
of this map’), will probably lead to a more dispersed and less
clearly structured gaze behavior, maybe with more gazes on
visually salient features.

The automatic recognition of the task a viewer is per-
forming on a map could build upon gaze map matching (see
Fig. 3). The recognized task in turn would serve as input

a b c

Figure 4: Inaccuracy and disambiguation.

for gaze-based assistance, or be analyzed w.r.t. usability re-
quirements. Although task recognition is out of the scope
of this paper, the task layer is relevant for us (indicated by
the two converse arrows in Fig. 3): gaze map matching can
be facilitated with knowledge about the task the user is per-
forming. If we already know, for instance, that the user is
searching for the shortest biking route, we can expect fix-
ation sequences along topologically connected edges of the
biking network graph, whereas topologically unconnected se-
quences are less likely to happen. The type of feature we
can expect the user to gaze at (point, polyline, polygon)
also depends on the task. These expectations can be used
for ambiguity resolution when a fixation is in the vicinity of
more than one feature.

Our point in this paper is that knowledge about the task
can be used to make gaze map matching algorithms more
intelligent. We do not aim at solving gaze map matching for
any possible task.

Thus, for the rest of this paper, we focus on a specific
class of tasks we call inspection tasks. In an inspection task,
the user’s gaze traverses the edges of a graph (e.g., the road
segments of a street network) at low speed. In most cases,
the traversal path will follow topologically connected edges.
A saccade to an edge further away will only rarely happen.
We perform experiments in which participants have to gaze
at a predefined path on the map. By giving the participants
almost no freedom we can be sure to have a ground truth
against which we can evaluate the algorithms (see section 5).

3.4 Challenges

3.4.1 Technological and Physiological Challenges
Eye tracking data are inaccurate due to a number of tech-

nological and physiological reasons. Accuracy depends –
among others – on the device used, the eye physiology, the
relative position of the eye tracker to the head, the lightness
conditions of the recording environment, and the calibration
quality. Most eye tracker manufacturers do currently not re-
port properly on the accuracy specifications of their devices,
given certain conditions [10].

Thus, and due to the mini-saccades (see section 2.1), the
gaze point recorded by the device will almost never be lo-
cated exactly on the geographic feature currently inspected.
The same applies to fixations. An additional challenge has
been mentioned in section 2.4: fast saccades to distant parts
of the map may occur at any time.

3.4.2 Spatial Disambiguation
The spatial disambiguation challenge is a logical conse-

quence of inaccuracy. As the fixation points are never ex-
actly on the inspected features, a distance based approach
becomes necessary. A fixation located close enough to a fea-
ture is matched with this feature. Ambiguity occurs when a
fixation is in the vicinity of more than one feature.
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This problem is well-known in vehicle map matching, and
typically resolved by taking a larger termporal and spatial
context into account. For instance, it is clear how to match
the vehicle trajectories displayed in Figs. 4a) and b) to road
segments although parts of the trajectories are close to more
than one road. The ‘jump’ from one road to the other in
Fig. 4c) would be interpreted as inaccuracy (and thus be
matched to the lower road) because there is no sensible way
of traveling from the lower to the upper road given the speed
restrictions of the vehicle.

If the points in Fig. 4 were the result of an eye tracking
experiment it would not be that simple: the data shown in
Fig. 4c) could then result from a participant really having
looked at the upper road for a short moment (for whatever
reason). In theory, it could even be possible that there is no
inaccuracy in the data, i. e., that the participant has really
gazed at the white area between the two roads in Fig. 4a).
Another possible hypothesis could be that the gaze has been
jumping back and forth between the upper and lower road
in Fig. 4a).

The spatial disambiguation challenge for gaze map match-
ing thus consists in deciding how much spatial context can be
used for disambiguation or not. This is task-dependent (see
section 3.3). A gaze map matching algorithm well-suited for
one task may perform bad for a different task.

4. ALGORITHMICALLY MATCHING GAZE
WITH A ROAD NETWORK

This section introduces two simple geometric algorithms
for the gaze map matching problem (see section 3.2), and
one probabilistic algorithm that can be parameterized for a
specific task. A road inspection task is assumed (see sec-
tion 3.3), and the set of geographic vector features G con-
tains only road segments.

4.1 Closest Line Matching
The base case algorithm is a simple geometric approach

that takes only the distances between the fixation points and
the vector lines into consideration. For each geo-referenced
fixation φ<t> (the t-th element in the geo-referenced fixa-
tion sequence φ), the algorithm retrieves all features from
G (accesible with a spatial index) that are located in a pre-
defined radius, and returns the closest one of them as gt.
If no feature is within the radius, ω is returned for time t,
indicating ‘not matchable’.

The radius is computed in a way that it corresponds to the
30 pixels that were also used for fixation computation. We
transformed this value into map units using the projection
πt from screen to map coordinate system valid when the
gaze data were retrieved.

4.2 Simple Sliding Window
The simple sliding window algorithm is a first approach

for spatial disambiguation. It is inspired by the situation
that typically occurs at crossroads, displayed in Fig. 4b: the
closest point matching algorithm would map the point in
the center to the vertical line, although it is likely that this
fixation is inaccurate, given the inspection of the horizontal
line before and after the point.

The sliding window algorithm takes n past and m future
fixations into account. In our case, a symmetrical window
with n = m = 2 was successful. The algorithm first uses the

inspected
geo feature
(hidden state)

geo-referenced
fixation
(observation)

t
t=0 t=1 t=n-1 t=n

...emission probability:
eye tracking noise

state transition probability:
task dependent

Figure 5: HMM structure

closest line matching algorithm to retrieve the closest line
for each fixation. The algorithm then sequentially moves
from left to right, starting at time index 2, and compares
all fixations in the 5-neighborhood around the current time
index. If these match the pattern L1-L1-L2-L1-L1, where
L1 and L2 have to be different, and one of L1 and L2 may
be ω, the middle position (L2) would simply be replaced by
L1. The runtime complexity of both, closest line matching
and simple sliding window, is obviously linear with respect
to the length of the fixation sequence.

4.3 Hidden Markov Model Inference
Hidden Markov Models (HMM) are dynamic probabilis-

tic models that are used for reasoning under uncertainty in
temporally evolving situations (see [21, chapter 15.3] for an
introduction). Among many other applications, they have
been used in vehicle map matching to find the most likely
path a vehicle has traveled [17]. In this paper, the HMM
algorithm is used to demonstrate how task knowledge can
improve gaze map matching.

4.3.1 Model Structure
An HMM is a graphical model with two states (more pre-

cisely: two random variables) for every time slice: one hid-
den and one observed state. In our case, the observed state
is a geo-referenced fixation (xt, yt, πt). The hidden state
is the geo feature gt the user has inspected at time t. The
model evolves over time, i. e., the length of the observation
sequence φ determines the number of time slices of the HMM
(see Fig. 5). The directed edges in the graph express condi-
tional dependencies: the geo feature a user inspects at time
(t + 1) depends only on the road segment she has inspected
at time t (inter-slice dependencies). The geo-referenced fix-
ation we observe at time t depends only on the geo feature
a user inspects at time t (intra-slice dependencies).

The first order Markov assumption (between slices) is a
simplification due to the lack of a sophisticated task model.
For other tasks than road inspection it may be an over-
simplification: for instance, a user performing a structured
search task on the whole map is less likely to return to fea-
tures she has seen at any time before. In contrast, a user
with a comparison task may be more likely to return to fea-
tures she has seen before.

4.3.2 Probability Distributions
Three probability distributions need to be specified for

an HMM: the initial probability distribution, the emission
probabilities, and the state transition probabilities.

Initially, i. e., for time slice t = 0, we assume an equal
distribution over all features. This makes sense because a
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Node distance Weight
0 (same line) 5

1 4
2 2

>2 and ‘unconnected’ 1

Table 1: Weights used for the state transition prob-
abilities of the HMM.

system typically has no initial expectation on which parts
of the map the user will be more interested in. More so-
phisticated models could use feature saliency to capture the
‘eye-catchingness’ that may attract the first gaze.

Emission probabilities model the inaccuracy of the system,
i. e., the probability that a geo-referenced fixation φ<t> =
(xt, yt, πt) is observed, given the user is inspecting a given
feature gi. To our knowledge, there is no related work on
how eye tracker inaccuracy can be approximated mathemat-
ically. Lacking better options, we use a zero-mean Gaussian
as in [17, p.339]:

p(φ<t>|gi) = 1√
2πσz

e
−0.5( d

σz
)2

,

where d is the distance between φ<t> and gi, and σz is the
standard deviation of the eye tracker. As mentioned in sec-
tion 3.4.1, most eye tracking manufacturers do not report
on the error measures of their devices. Besides, the stan-
dard deviation depends on the size of mini-saccades, which
in turn depends on the user. We used the size of the box
used for fixation computation (see section 5.1.2) as an ap-
proximation.

State transition probabilities model the dynamics of the
system. In our case, this is the probability that the user’s
gaze stays on the same, or changes to another geo feature.
This probability is highly task dependent. For inspection
tasks on a network, the edge gt, and edges that share a
common node with gt are more likely to appear in t+1 than
edges that are far away. Still, edges far away can never
be assigned a zero probability (as in road matching). Our
experiments showed that the values listed in Table 1 were
successful in the evaluation (where weight w means a prob-
ability w-times of the probability of ‘unconnected’, normal-
ized over all state transitions).

For different tasks, especially those with more freedom,
these weights will differ. Free exploration tasks, as an ex-
treme case, could have the same weight for all state transi-
tions (which is not very interesting), or assign state transi-
tions depending on saliency.

4.3.3 Inference
We use the Viterbi algorithm [8], a dynamic programming

algorithm which finds the most likely sequence of hidden
states in an HMM for a given sequence of observation –
in our case: the most likely feature sequence γ for a geo-
referenced fixation sequence φ.

On maps with many road segments the state transition
probabilities were very small. For long gaze sequences, this
caused Viterbi to run into underflow problems due to many
multiplications. We solved this problem with a common
technique: by using the natural logarithm of the probabili-
ties and replacing multiplication by summation.

A post-processing assigned ω to positions t in the result

Figure 6: Data collection setup

gaze fixation

30 px

3
0
 p

x

Figure 8: Fixation computation.

sequence if no geo feature was in the radius of the respective
φ<t> – in other words, if the closest line matching algorithm
would also have returned ω.

The runtime complexity of Viterbi is known to be O(n
x |S|), where n is the number of observations, and |S| is
the size of the state space (in our case: the number of lines
|G|). For large maps and/or gaze-based assistance scenarios
this may lead to inacceptable runtimes where more efficient
approximate inference algorithms should be preferred over
Viterbi. This was not necessary in our case.

5. EVALUATION

5.1 Data collection

5.1.1 Hardware and Software Setup
Our hardware consisted of the Ergoneers Dikablis head-

mounted mobile eye tracker with a gaze capture rate of 50
Hz. The data were transmitted via a coaxial cable to a
laptop, designated only for gaze recording. From there they
were transmitted via WiFi with 25 Hz to the working laptop
where the framework for map visualizations, gaze capturing,
and analysis was running. The maps were displayed on a 18”
desktop screen (see Fig. 6).

We used a mobile head-mounted eye tracker although sta-
tionary (remote) eye trackers would return data of higher
accuracy for desktop studies. This makes gaze map match-
ing harder than necessary. However, our algorithms should
also be able to handle situations with low accuracy, such as
walking through the city with a map displayed on a tablet.
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Figure 7: Cartographical material used for the evaluation (cases 9/10 are vector maps of the same regions as
cases 11/12).

We developed a framework (a Java 6 application) that
supports eye tracking user studies for vector and raster maps.
The framework captures, pre-processes, and stores the gaze
of participants while they are inspecting the map. The anal-
ysis part of the framework provides functionality to post-
process the recorded gaze data after the study, i. e., to run
our gaze map matching algorithms and visualize the results.
The result visualization helped to get a first idea of the algo-
rithms’ functionality (Figs. 9 and 11 are screenshots of the
framework, enhanced with labels).

5.1.2 Computation of Fixations
Fixations were computed from the gaze sequence as fol-

lows (see Fig. 8): a quadratic window with side length 60px
was created around the first gaze point. If for a given time
threshold (150 milliseconds in our case) all following gaze
points occurred inside this window, a fixation (green point)
was formed by taking the mean x and y of all gaze points in-
side the window. If a gaze point occurs outside the window,
or after having created a fixation, a new window is created
around the next point and the procedure starts over again.

5.1.3 Cartographical Material
The gaze data were collected for 14 maps of road networks

(we call them ‘cases’, see Fig. 7) with increasing complexity
and realism. Cases 1 to 10 were vector maps, cases 11 to 14
were raster maps. The road network vector data for the four
raster cases were available and later used by the algorithms.
The coordinate system Cm of all maps was the ‘swiss grid’
map projection4.

Cases 1 to 6 were manually drawn base cases, cases 7
to 10 were vector road maps from a real city. The idea
of the base cases was to cover typical situations in which
erroneous matchings can occur due to ambiguity: 1) One line
as absolute base case (distinguish between line and ω). 2)
Two lines with overlapping bounding boxes. 3) A line with
several (almost) 90◦ street crossings. 4) A line with several
crossings at small angles. 5) Three lines with the instruction
to jump between them at two designated positions. 6) Three
lines with three jumps, some crossing the middle line.

4http://www.swisstopo.admin.ch/internet/swisstopo/
en/home/topics/survey/sys/refsys/projections.html
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Figure 9: Spatial disambiguation through the sliding
window (bottom), compared to closest line matching
(top).
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Figure 10: Example eye tracking data: gazes (yel-
low) and fixations (blue) on the road network un-
derlying the raster map of case 13. Red indicates
the highway the participant had to follow.

Cases 7 to 10 were vector cases based on real street net-
work data from a topographic map (1:25.000) of the area
around Lausanne, Switzerland. All topographic maps were
provided by swisstopo5 in the ESRITM Shapefile format.
Cases 11 to 13 were topographic raster maps (1:25.000) of
Lausanne, case 14 was a topographic raster map (1:200.000)
of Bern, Switzerland. In cases, 1 to 12 a thin red line in-
dicated the path the participants had to follow, in case 14
this line was cyan. The path in case 13 was defined by a
highway.

5.1.4 Participants and Procedure
Two users participated in our experiment, each complet-

ing all 14 cases (leading to 28 datasets). The users were
placed in front of the desktop screen at a distance of 80
centimeters (see Fig. 6). Four visual markers were attached

5Source: Bundesamt für Landestopografie swisstopo (Art.
30 GeoIV): 5704 000 000

Figure 11: Spatial disambiguation through a
Markov Model (bottom), compared to sliding win-
dow (top). Matched fixations from a subarea of
Fig. 10.

on the screen to span up a coordinate system in which the
screen coordinates for the captured captured gaze data were
computed.

At the beginning of each case, participants were shown the
map and given a short time to attain overview knowledge.
This should avoid exploration behavior during the experi-
ment (inspection, not exploration behavior was the focus of
this study). The participants were then instructed to strictly
follow the highlighted path with their gaze. In case 13, the
instruction was to follow a selected highway, starting from a
red dot, and change highway at the crossroads in direction
East.

5.2 Results
Each of the 28 datasets was pre-processed by comput-

ing fixations from the gazes. Figure 10 shows one example
dataset. Then, the data were processed with the closest
line matching algorithm, the sliding window algorithm, and
the HMM algorithm. The maximum runtime of the HMM
algorithm was approx. 3 minutes (on a 2.33 GHz desktop
computer with 8GB RAM).

All 84 resulting feature sequences were analyzed w.r.t. the
number of fixations that was matched with a correct line
(i. e., a line the participant was supposed to follow). The
percentage of correctly matched fixations for each case, each
participant, and each algorithm are listed in Table 2.

Comparing the results of closest line and sliding window,
the data show that the sliding window algorithm performs
better in 8 of 28 trials (29%), and worse in 3 (11%). The
data, especially of participant 1, indicate that sliding win-
dow seems to help especially for simple maps with few roads,
such as the manually designed base cases. Figure 9 displays
an example (case 2, participant 1): the fixation marked with
a1 is in the vicinity of both lines, and (probably due to inac-
curacy) mapped to the wrong lower line by the closest line
matching algorithm. The sliding window of size 5, eliminates
this error.

Comparing the results of sliding window and HMM, the
HMM clearly achieves a better result than the sliding win-
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Participant 1 Participant 2
Cases Closest Line Sliding Window Hidden Markov Closest Line Sliding Window Hidden Markov

1 0.9310 1.000 0.9310 0.3142 0.3142 0.3142
2 0.7692 0.8461 0.8846 0.3888 0.3888 0.3888
3 0.6250 0.6666 0.7916 0.7142 0.7619 0.7619
4 0.4137 0.4827 0.6896 0.2941 0.2941 0.4705
5 0.5909 0.5909 0.5909 0.7857 0.7857 0.7857
6 0.6129 0.6129 0.6129 0.4400 0.4000 0.4400
7 0.3552 0.3421 0.4210 0.5243 0.5243 0.5243
8 0.3736 0.3736 0.4065 0.5365 0.5487 0.5731
9 0.4800 0.4800 0.5600 0.5396 0.5396 0.6190
10 0.4117 0.4117 0.5176 0.4555 0.4555 0.4777
11 0.3809 0.3809 0.5952 0.1904 0.1904 0.4285
12 0.5074 0.4925 0.5373 0.4069 0.4186 0.4069
13 0.2151 0.2151 0.2278 0.5978 0.6086 0.6086
14 0.4814 0.4814 0.4691 0.4867 0.4867 0.5309

Table 2: Comparing the results of the algorithms: ratio of correct matched fixations over all fixations, for
two participants, 14 cases, and 3 different algorithms.

dow: it performs better in 16 trials (57%), and again 3 times
(11%) worse than the sliding window. Figure 11 displays an
example (case 13, participant 1): the fixations marked with
a1, b1, c1, and d1 were matched wrong by the sliding window
algorithm. The HMM algorithm matches them correctly to
the line the user was inspecting (any of the parallel red lines
was possible). This is because the transitions from the red
line to the rest of the network are less likely than staying on
the line. A good example is the line that c1 was matched
to incorrectly, because three nodes have to be traversed to
reach it from the red line.

Overall, these results indicate that more complicated maps
require more sophisticated algorithms that are aware of the
participant’s task. A task-aware algorithm then outperforms
purely geometric algorithms, such as the sliding window.

6. CONCLUSION AND OUTLOOK
This paper has introduced the gaze map matching prob-

lem which, to our knowledge, is the first attempt to an au-
tomated content-based analysis of gaze with respect to geo-
graphic features displayed on a map. The goal of gaze map
matching consists in automatically determining the features
a person has looked at, given inaccuracy and spatial ambigu-
ity. Various applications in the domains of usability studies,
geo visualization, and gaze-based assistance exist.

At this stage of our research, we considered gaze map
matching as a geometrical problem. We demonstrated a
probabilistic algorithm, working with a Hidden Markov Mo-
del, that performs better than simpler algorithms because it
is able to exploit knowledge about the higher level task, an
‘inspection task’ in our case. An essential question for future
research is how gaze map matching can be performed for
other tasks. On the other hand, we will try to automatically
recognize the task a user is performing on a map from her
gaze. This is related to work on activity recognition from
gaze [2], and intention recognition from trajectories [12]. As
indicated in Fig. 3, the steps of task recognition and gaze
map matching are interconnected.

Our 28 gaze datasets were taken from 2 participants. One
issue for future work is to include a larger number of par-
ticipants in the experiments to account for individual differ-
ences. Sections 4 and 5 discussed only line features. Future

work should consider points and polygons, too.
We are planning to investigate novel concepts for gaze-

based assistance that build upon gaze map matching. Inter-
active maps were used to motivate gaze map matching; in
our study users were not allowed to pan or zoom. However,
as the zoom level was treated separately in theory and imple-
mentation, the step to interactive maps is small. The HMM
state transition probabilities were assigned with a systematic
try-out, based on plausible assumptions. Clearly, learning
these task-dependent probabilities would be a worthwhile
endeavor for future work. Incremental algorithms for gaze
map matching are another open research topic to enable
gaze-based assistance on cartographic maps.
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movement analysis for activity recognition using
electrooculography. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 33(4):741–753,
April 2011.
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